

White Paper:

The Curl™ Platform:
A Deployment Architecture for Rich Client

Applications

 i

Table of Contents

Introduction .. 1
Architecture Overview ... 2

Motivation... 2
A Deployment Architecture Optimized for Web Performance.. 2

Deployment Architecture ... 3
Stable, High Performance Runtime Environment .. 3
Secure Mobile Code .. 5
Web Standards for Networking and Data Connectivity.. 5
Disconnected Operation .. 6
Dynamic Generation .. 6

Conclusion... 7

©2001-2002 Curl Corporation 1 `

Introduction
While the Web has enabled an unprecedented amount of connectivity and
centralized data distribution, it has also resulted in a return to the days of a
“dumb terminal” interface with limited interactivity and vastly inefficient use of
bandwidth. This is because the Web (and the HTML standard which enabled its
proliferation) was originally designed to transmit large amounts of text-based
data with minimal presentation logic; a few hyperlinks and images, perhaps, but
not the extensive layout capabilities and interactive elements demanded by Web
applications today.

The solution to this problem is creating a way of maintaining presentation and
associated business logic on the client, which requires that the client be more
than a “dumb terminal”. It must be a live, executable application that is capable of
interacting with the end user, retrieving additional data for display, and storing
data for manipulation, filtering, or re-presentation. The challenge is to provide this
rich client interface without reverting to the days of installed client-server
applications, with all of the associated configuration issues and high costs of
ownership. This requires the use of “mobile code”, executable applications that
can be delivered over a network to the client device.
The Curl™ platform was designed from the ground up for rich client Web
applications. This has resulted in a unique language and deployment architecture
optimized for Web delivery, addressing both the limitations of present Web
technologies and the deployment issues of other rich client approaches.

©2001-2002 Curl Corporation 2 `

Architecture Overview

Motivation

Back when the Curl project was started in 1995, many of the computer scientists
at MIT had already been using HTML (and later, JavaScript) for 6 years. While
these standards were fine for Web documents with limited interactivity, the
founders of the project realized that for true Web applications they needed a
more fully-featured, robust technology. Curl technology was a result of this
project, providing a basis for the deployment architecture outlined below.

A Deployment Architecture Optimized for Web Performance
Web delivered applications have traditionally relied upon a thin client deployment
architecture which is vastly inefficient from a bandwidth and server processing
perspective, resulting in poor usability and negatively affecting user productivity.
The solution to this problem is utilizing mobile code, and leveraging the power of
the client device as an equal partner for delivering rich client applications.
However there have been problems with mobile code approaches of the past;
security problems and performance issues being the most well known. The
Curl™ platform offers a deployment architecture which solves these mobile code
implementation issues. In addition, the architecture is very flexible, supporting
simple integration with existing Web infrastructure, disconnected operation,
dynamic generation of code, and all of the centralized deployment benefits
offered by the Web.

Web/Portal
Application

Servers

Secure, Stable
Client

HTTP/XML/SOAP

Optional Connection

©2001-2002 Curl Corporation 3 `

Deployment Architecture

A mobile code architecture has two main components: the code itself, and a
client-side execution environment for that code. The Surge™ runtime
environment provides a stable, high-performance platform for executing Curl
code. It was designed to execute Curl code identically, regardless of browser or
platform. It also implements a unique configuration and versioning system that
allows multiple versions of the Curl API to run concurrently on the same machine.
Additionally, the runtime implements a security model designed to address the
unique challenges of mobile code.

There are also several design considerations outside of the runtime which allow
for very flexible deployment options. The first is that networking and data
connectivity is based entirely on Web standards. The second is that Curl code
can be dynamically generated on the server and evaluated on the client. In
addition, Curl code can execute even when disconnected from the network,
allowing mobile operation previously unavailable in Web applications.

Stable, High Performance Runtime Environment
The Surge runtime environment provides an execution platform that is optimized
for Web performance. On the Web, the primary bottleneck is getting the code to
the client; a combination of the server’s processing time and downloading the
code. The Curl platform offers advantages over traditional thin client and rich
client Web technologies in both of these areas.
In contrast to traditional Web applications, Curl processing is completed entirely
on the client. This alleviates the bottleneck of server performance, allowing for
more scalable and robust applications. As for the bandwidth constraint, Curl
lends itself to highly abstract and compact code by implementing just-in-time
(JIT) parsing and compilation directly from source code. Additionally, whereas
traditional Web applications use a thin client approach, Curl code is a real,
executable application. This allows the application to run continuously without
further downloads other than for data or component retrieval. This vastly reduces
download time, increasing user productivity.
While JIT compilers offer many benefits, traditionally they have been negatively
perceived in the area of execution speed. The Surge JIT compiler is optimized to
alleviate these concerns. It makes extensive use of lazy compilation, executing
code fragments only when they are needed by the application. These results in
performance for the end user which is nearly indistinguishable from traditional
statically compiled applications.
Additionally, the Surge runtime environment is browser and platform agnostic.
Most of the runtime libraries are written in Curl, utilizing the core language
libraries for all logic and presentation. This allows porting of the runtime across
platforms as long at the core functions of the language are supported.

©2001-2002 Curl Corporation 4 `

Additionally, the plug-in portion of the runtime allows Curl applications to execute
identically regardless of browser, and support both embedded and full page
operation.

Configuration and Versioning
Client applications traditionally suffer from deployment problems when
installation upgrades replace shared libraries on the client machine. Any
programs relying on those libraries often behave unexpectedly or stop working if
the new library is not exactly backwards compatible with older versions.
Unfortunately, library backward compatibility is a very difficult thing to get right,
resulting in a deployment issue known as “.dll hell”.
The Surge runtime environment was designed with a configuration and
versioning system to solve this problem. There are two parts of this system:
versioning of the runtime libraries installed on the client, and allowing Curl
developers to version their applications.
The runtime packages installed on the client machine are versioned to
correspond to the version of the API they support. When a new version of the
Curl API is released, a totally new set of runtime packages are created. If an
application wants to take advantage of this new API, these packages are
downloaded and installed alongside the original installation. This works for both
newer and older versions of the API, allowing many applications to run
concurrently on the same machine, without relying on library compatibility to
ensure they work correctly. The bits that the application was written to are the
bits that will execute it.
The other piece of configuration and versioning is the ability to specify which
version of the Curl API an application or package was written for. This is done in
the first line of an applet, know as the herald:
 {curl 1.7 applet}
After testing to ensure compatibility with multiple API versions, an application
author can add compatible numbers to the herald:
 {curl 1.7, 2.0 applet}
This offers a lot of flexibility for applet authors working in varied deployment
environments.

Secure Mobile Code
The Surge security model was designed to eliminate the roadblocks which have
hindered the development of secure mobile code applications. This has been
accomplished by removing complexity and end user security interaction, learning
from the mistakes of the past, and building in alternative mechanisms to expand
the power of unprivileged applets. In doing so, the Curl solution allows robust
functionality in an unprivileged environment.

©2001-2002 Curl Corporation 5 `

A long-held but rarely enforced belief in the security industry: a simple system is
inherently more secure than a complex one. There are many caveats, however
the fundamental principle is sound: by introducing complexity, one increases the
number of possible attack modes, creates a more difficult administration task,
and opens up the distinct possibility of human error. The Surge security model
was designed with this belief in mind. It was designed to empower an applet to
do things that were previously thought to be “outside the sandbox”, but do them
in a secure manner, minimizing the use of trust. It was designed to allow system
administrators the power to explicitly grant applets access to network resources,
rather than forcing them to remove access implicitly granted. It was designed to
require a minimum of end user interaction. In a word, the Curl model was
designed to be simple.
To be clear, the word “simple” when talking about security does not imply
technically deficient. In fact, it is far more difficult to create a simple interface to
intricate, underlying security systems than it is to create a convoluted, complex
interface. The Curl security model has many features that display a conscious
decision to extend the capabilities of the technology while creating a simple,
easily-administered security interface.
The traditional sandbox security model placed severe restrictions on an applet’s
usefulness. As a result, most applet authors resorted to signing applets, which
allowed end users to give the applet trust and break outside the sandbox. While
this allowed applets to do interesting and powerful things for end users, it was a
troubling problem for administrators. By allowing end users, who rarely make
informed security decisions, the ability to grant trust to applets, administrators
were effectively putting the security of their network and the PC at risk. Left with
few alternatives, many administrators restricted or eliminated the use of mobile
code on their network.
In general, the Curl security model dictates that unprivileged applets must be
more powerful than traditional sandbox model allows. In doing so, it reduces the
need for privileged applets, which are potentially dangerous and have prevented
adoption of mobile code technologies in the past. While it is still possible to give
an applet privilege, Curl does not provide any mechanism (ie. signing) by which
the author can request privilege from the end user. A system administrator must
explicitly grant privilege to the applet, and it is highly discouraged. By building a
bigger sandbox, Curl allows developers and IT professionals to accomplish
powerful tasks while maintaining the integrity of their network and systems.

Web Standards for Networking and Data Connectivity
As a technology for distributed Web applications, a key piece of Curl’s
architecture is that Web standards are used by default for all networking and data
connectivity. By utilizing HTTP/S for standard data transport, XML for data
translation, and SOAP for remote procedure calls (RPC), a Curl application can
plug seamlessly into existing Web infrastructure.

©2001-2002 Curl Corporation 6 `

Curl’s networking API is based underlying support for TCP/IP, allowing privileged
applications to create socket level connections for customized networking. The
default method of unprivileged transport, however, is HTTP/S. This allows Curl
applications to interact with any standard Web, application, or portal server,
lowering the complexity of deployment.
Built on top of our standard networking, Curl’s XML API allows application
developers to interpret data feeds encoded in the popular data exchange format.
Of course, one could also write a parser in Curl for any other data format, but this
API enables better interoperability by enabling application authors to single
source their data repositories, sharing information across the network.
Finally, integrated support the SOAP RPC standard allows both the networking
and XML portions of the system to be utilized in more complex distributed
environments. Any backend system with a SOAP interface can now be accessed
directly by the client (if the system administrator has explicitly granted Curl
access). These more distributed architectures can reap significant scalability and
cost benefits.

Disconnected Operation
Since Curl applications are JIT-compiled by the runtime, once code has been
transmitted to the client it can continue to execute in either network connected or
disconnected environment. This is accomplished by saving the application to the
client device, and designing the application to maintain a data store on the client.
This allows application authors much more flexibility when determining end user
usage patterns, allowing them to connect and disconnect from the network
without loss in application functionality or user productivity.

Dynamic Generation
JIT compilation also allows for dynamically generating Curl code on the server.
This has two benefits. First, it provides an easy migration path for integrating Curl
into existing backend infrastructure designed to dynamically create HTML. Most
applications, however, can benefit from converting their architecture to achieve
the same dynamic effects directly on the client, downloading data and
components on demand and increasing responsiveness. Second, back end data
sets can be generated as Curl code rather than XML or some other data format.
This allows the application to skip the data-parsing step and dynamically
compiled the data directly into Curl objects.

©2001-2002 Curl Corporation 7 `

Conclusion

There are many reasons that the Curl™ platform provides a compelling
architecture for next generation Web applications, however they all stem from the
same source: Curl was designed from the ground up for Web applications. This
is shown throughout both the innovative language design and the robust
deployment architecture. By choosing Curl for a rich client solution, one is able to
address development and deployment issues which have plagued mobile code
implementations of the past while providing a more rich, productive application
for end users.

